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Background
Physics, as a foundational framework for describing the natural world, has been pivotal to scientific inquiry throughout human history. Physical information has long been integrated into  various  research  domains,  including  evolutionary  computation.  Over  the  past  two decades,  such  information  has  frequently  been  applied  in  data-driven  contexts  within evolutionary computing [1]. By utilizing data from classical physics simulators—such as the finite element  method  [2],  finite  difference  method  [3],  and  finite volume  method  [4]— researchers have developed surrogate models to approximate real-world physical indicators. These  models  guide  evolutionary  algorithms,  enabling  optimal  solutions  in  engineering optimization   problems.   Recently,   the   significance   of   physical   information   has   been increasingly  recognized  within  artificial   intelligence,  with  a   growing  body  of  research dedicated to integrating physical data into learning and optimization processes [5]. Notably, evolutionary  computation  has  demonstrated  substantial  promise  in  physics-informed machine learning and optimization applications, where physical information extends beyond traditional data-driven surrogate models. In specific application areas, embedding physical prior knowledge directly into optimization processes has enhanced convergence efficiency and accuracy [6, 7]. Moreover, evolutionary algorithms, renowned for their ability to manage multimodal optimization problems, have shown distinct potential in addressing the complex landscapes  inherent  to   physics-based  machine  learning  [8].  Additionally,   evolutionary algorithms  are  broadening  the  scope  of  physics-informed  machine  learning,  effectively tackling challenges that traditional optimization methods, such as evolutionary transfer [9], meta-learning [10] and architecture search [11], often find difficult to overcome. Collectively, these advancements highlight the promising role of evolutionary computation in physics - informed learning and optimization.

Aims and Scope
The theme of this special section is Physics-Informed Evolutionary Learning andOptimization, which aims to advance the development of evolutionary computation within the realm of physics-informed learning and optimization. This special section welcomes submissions on traditional   physical  data-driven  optimization  techniques,  applications  of  evolutionary algorithms in physics-informed machine learning, and evolutionary optimization methods that incorporate physical priors, information, or ordinary/partial differential equations. We invite submissions that explore theories, algorithms, and applications at the intersection of physics and evolutionary computation.
Authors are encouraged to submit original, unpublished work to this special section. Topics of interest include, but are not limited to:
[image: ]     Evolutionary computation on physics-simulator-based engineering optimization
[image: ]     Evolutionary computation with physics prior
[image: ]     Neural evolution for physics-informed machine learning
[image: ]    State-of-the-art  evolutionary  computation  techniques  (e.g.,  evolutionary  transfer,

evolutionary   multiobjective   optimization,   evolutionary    multitasking)   for   physics - informed machine learning
[image: ]     Evolutionary neural architecture search for physics-informed neural networks
[image: ]     Evolutionary computation in physics-informed inverse design
[image: ]     Evolutionary computation for ordinary\partial differential equations
[image: ]     Evolutionary computation for reduced order models of dynamical systems.
[image: ]     Evolutionary computation for scientific discovery
[image: ]     Evolutionary  computation  for  physics-informed  applications  (e.g.,  structure  design, lithium battery, and electrochemistry, etc)
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